(T)

Roll No.

PAPER ID-14530

B.C.A. EXAMINATION, 2023

(First Semester)

LOGICAL ORGANIZATION OF

COMPUTER-I

Code: 8CA-104

Time: 3 Hours

Maximum Marks : 80

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

(D23-3-09/23) T-14530

P.T.O.

- 1. Explain the following briefly:
- $8 \times 2 = 16$

- (i) EBCDIC codes
- Viii Venn Diagrams
- (jii) Combinational circuits.
- (iv) Self-complementing codes
- Half adder
- Encoder circuits
- (vii) XOR gate
- (viii) Canonical form of Boolean Expressions. ..

Unit I

- 2. Solve the following number system conversions
 (Attempt any four): 4×4=16
 - (i) $(B2E)_{16} = (?)_2$
 - (ii) $(5456)_8 = (?)_{16}$
 - $\sqrt{(iii)} (1110101101101)_2 = (?)_{10}$
 - (iv) $(1527.362)_8 = (?)_2$
 - (y) (1046.25)₁₀ = (?)₁₆
 - (vi) $(1011001110011.00110)_8 = (?)_8$

T-14530

2

3. Explain the following:

4×4=16

- (i) Error detecting codes
- (ii) Hamming codes
- (iii) Floating point representation
- (iv) Binary subtraction using 2's Complement method.

Un (II

- 4. (a) State and prove the following Boolean
 Algebra laws using examples: 4×2=8
 - (i) Distributive Law
 - (ii) De Morgan's Law
 - (b) Prove the following Boolean expressions using truth table: 4×2=8

$$AB + A'C + BC = AB + A'C$$

(ii)
$$ABC + AB'C + ABC' + AB'C' = A$$
.

- (a) Solve the following Boolean Expression using K-map: 6 $F(A, B, C, D) = \Sigma(0, 2, 3, 6, 7, 12, 13, 14) + \Sigma d(1, 4, 11, 15)$
- (b) Simplify the following expression using Boolean Algebra laws and also draw a circuit diagram for the minimized expression:

 5

X'Y'Z + XY'Z' + XY'Z + XYZ' + XYZ

(c) Explain SOP and POS forms of expression using example. 5

Unit III

- What are logic gates? Explain the types of Logic Gates with their truth table as well as diagrams.
- 7. (a) Define Universal gates. Prove that NAND and NOR gates are universal gates. 8
 - (b) Multilevel NAND and NOR Circuits. 4
 - (c) Explain Combinational circuits and their characteristics.

(D23-3-09/24) T-14530

- 8. Design and implement following digital circuits:
 - (a) BCD to 7 Segment Display
 - (b) 5X32 decoder using 3X8 decoder 8
- 9. (a) Design and implement a full adder circuit.
 - (b) Define multiplexer circuits and its advantages. Also design a 4X1 MUX with block diagram and circuit.